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PURPOSE: To provide a procedure for computing the distortion of a pulsed signal as it

is transmitted through the earth's ionosphere from a communication satellite,

RELATED TO: RAND's continuing study of communication satellite technology for NASA.

The results of this study can be used in designing satellite systems which employ time-
division multiplexing or other types of pulsed transmission.

THE PROBLEM: Several of the systems proposed for multiple access to communication sat-

ellites by earth stations use forms of pulse code modulation. For many, it is necessary
to determine if a given signal is present at a given frequency at a specified time.
However, the signal must pass through the ionosphere, where the nonlinear variation of
the refractive index with frequency causes a dispersion, modifying the waveshape and
spreading out the pulse in time. Thus the system may be confronted with the presence

of signals in several frequency channels at a specified time. These effects limit the
communication capability of the system and may determine the maximum permissible band-
width or shortest permissible pulse length. Analyses have been made of the effects of
dispersion on the transmission of pulsed signals, but so far none has been satisfactory.
The exact solutions of the wave equations in terms of Bessel's functions converge too
slowly to be suitable for numerical calculations. The approximate solutions using the
quadratic phase distortion method break down when the deviation is comparable to the
system bandwidth, which is just the condition of interest.

THE PROCEDURE: A theory of propagation in a generalized ionosphere is presented, as-
suming that the carrier frequency is sufficiently above the cutoff frequency so the

ray paths are straight lines, that effects of the earth's curvature and magnetic fields
can be neglected, and that only horizontal polarization need be considered. A new pro-
cedure is given which derives the 'equivalent slab thickness'" to represent the atmo-
spheric electron density from an approximate solution of the wave equation instead of
from an approximation to the equation itself. The equivalent slab parameters are de-
termined from the integrals of the electron density and its square; however, quantities
actually measured are the maximum electron density (measured by ionosondes) and the
total electron content (measured by a Faraday rotation technique). After a review of
the data, the experimental values are introduced into the calculation to derive a new
approximation that makes use of the well-known method of stationary phase. In order

to avoid the same convergence difficulties as arise in expansion about the carrier
frequency, it is necessary to use a transformation of variables that is equivalent to
expressing the frequency as a function of phase, instead of vice versa. Results are
compared with the classical theory of Ginzburg and shown to be a nontrivial extension
of the theory.

PRINCIPAL FINDINGS: The shortest acceptable pulse width for a pulsed communication
system between earth and a satellite is equal to rise time and is proportional to the
total electron content along the propagation path and inversely proportional to the
three-halves power of the frequency. At 5 GHz carrier frequency, the typical range
of shortest pulse width is 1 to 6 nanoseconds, permitting very high data rates. The
overall displacement of the pulses might require a delay compensator to be built into
each channel of a multichannel pulse code modulation system. Since the differential
4~-lay between channels 1s proportional to the electron density along the path, it may
vary by a factor of 10 to 20 during the day, and a variable delay compensator may be
required.

MW




-~ e NASr-21(02)

MEMORANDUM

v RM-5558-NASA
MAY 1968

TRANSIONOSPHERIC PROPAGATION OF
PULSED SIGNALS

W. Sollfrey

This research is supported by the National Aecronautics and Space Administration under
Contract No. NASr-21. RAND Memoranda are subject 1o critical review procedures at
the research department and corporate levels. Views or conclusions expressed herein are
nevertheless the primary responsibility of the author, and should not be interpreted as
representing the official opinion or policy of NASA or of The RAND Corporation.

e RN

1700 MAIN ST. = SANTA MONICA + CALIFORNIA « 90408




Published by The RAND Corporation

-



PRECEDING PAGE BLANK NOT FILMEL

iii

PREFACE

This study, undertaken as part of RAND's continuing study of
Communications Satellite Technology for the National Aeronautics and
Space Administration, considers the distortion of a pulsed signal as
it is transmitted through the earth's ionosphere.

The efficient use of the power available from satellites re-
quires the use of wide-band transmission, corresponding to short
pulses. These pulses may be distorted by the dispersive effects of
the ionosphere, with the effects greater at the lower carrier fre-
quencies and during periods of solar activity. This Memorandum
studies the phenomena and provides a means for computing the re-
sulting distortion. The results of the study can be used as an aid
for designing satellite systems which employ time-division multi-

plexing or other types of pulse transmission systems.
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SUMMARY

Signals transmitted between the ground and most earth satellites must
pass through the ionosphere. The nonlinear variation of the refractive
index with frequency causes a dispersion which can result in significant
signal distortion. There have been previous theoretical investigations
of the effects of dispersion on the transmission of pulsed signals, but
they have suffered from various mathematical difficulties. Moreover, few
experiments have been made to measure pulse distortion. Hence, the prob-
lem has been reconsidered in this Memorandum.

A theory of propagation in a generalized ionosphere is presented, and
it is shown how an "equivalent slab'" should be introduced. Experimental
data were assembled from various sources to indicate the ranges of the rele-
vant parameters. The integrals which arise in the theory are evaluated
by a new method which does not suffer from the convergence difficulties
which appeared in previous work. The solution depends on the group delay
at the carrier frequency, the dispersion about the group delay, and other
parameters., Explicit numerical values depend on the time of day, season,
latitude, and position in the sunspot cycle. Results are computed and
presented graphically for several typical ionospheric conditions with either
rectangular or raised cosine pulses incident. These results extend the
classical theory of Ginzburg.

The shortest acceptable pulse width is determined as a function of
the parameters. It is shown to be proportional to the total electron con-
tent along the communication path and inversely proportional to the three-
halves power of the frequency. At a carrier frequency of 5 GHz, the typi-
cal range of shortest pulse width is between 1 and 6 nanoseconds, permit-

ting very high data rates.
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I. INTRODUCTION

Several of the systems proposed for multiple access to communica-
tion satellites employ forms of pulse code modulation. These may
involve time-division multiplexing or mixed frequency and time~divi-
sion multiplexing (spread spectrum). Many of these systems involve de-
termining whether a given signal is present at a given frequency at a
specified time. The waveshape of the signal arriving at the receiver
must be suitable for such analysis.

Signals transmitted in either direction between the earth and
a communication satellite must pass through the ionosphere. The
transmissions are generally at frequencies sufficiently high that
the effects of ionospheric absorption and refraction are negligible.
However, the transmission coefficient of the ionosphere is a function
of frequency, so the medium displays dispersion. The effect will be
to spread out the pulse in time and produce modifications of the
waveshape. Furthemore, since the total delay of the signal in pas-
sing through the ionosphere is frequency-dependent, the system may
be confronted with the presence of signals in several frequency
channels at a specified time. These effects act to limit the com-
munication capability of the system énd may determine the maximum
permissible bandwidth, or shortest permissible pulse length. These
possibilities will be investigated in this Memorandum.

A considerable body of literature has been developed on the
propagation of pulses in dispersive media. The applications have

been both to the ionosphere and to waveguides operating near cutoff.




The distortion of a square wave propagating in a waveguide has been

(1)

calculated by Elliott, and the results of Ref. 1 have been applied

(2) (3)

to the ionosphere by Counter and Dyce. Reference 1 follows

the procedure of expanding the phase of the transmigsion coefficient
of the ionosphere in powers of the deviation from the carrier fre-
quency, and then keeping only second-order terms, A parallel de-
velopment is presented in Russian literature.(a’s) The method has
been carried to third oxrder by Gershman(6) and Wait.(7) The validity
of Elliott's results has been questioned,(7’8) and it has been shown

(9)

recently that there is a mistake in integration in Ref, 1. The
theoretical results of the other references cited here are correct.
Furthermore, it has been demonstrated(s) that the problem can be
solved exactly in terms of Lommel's functions of two variables, and

(10~

several writers 12) have presented solutions in series of Bessel

functions.

In view of this previous work, it may be asked if there is any
point to additional work on the problem, The reasons for the theo-
retical research to be presented here may be summarized as follows.
The exact solutions in series of Bessel functions converge quite
slowly and are not suitable for numerical calculations. The approxi-
mate solutions using the quadratic phase distortion method are sub-
ject to the following anomaly: the expansion in powers of the devia-
tion from the carrier frequency begins to converge slowly when the
deviation is comparable to the system bandwidth, which is just the

condition of interest. Furthermore, careful investigation shows




that the convergence rate depends on a parameter which is directly
proportional to the carrier frequency and inversely proportional to
the total electron content, and which may become on the order of
unity in the gigahertz region. Hence, the problem has been recon-
sidered with a view to avoiding these difficulties.

A theory of propagation in a generalized ionosphere is presented
in Section II. It is shown that the solution obtained satisfies a
proper causality condition, which is not satisfied by the approximate
solutions of Refs. 1 through 9. Section III contains a summary of
the relevant experimental results, The integrals which arise in
Section II are evaluated in Section IV by a method which does not
suffer from the convergence difficulties indicated above, The re-
sults depend on the group delay at the carrier frequency, the dis-
persion about the group delay, and other parameters. Graphs are
presented for several typical ionmospheric conditions with either
rectangular or raised cosine pulses incident. The shortest accept-~
able pulse width is determined as a function of the parameters,

The Appendix shows that for an ionospheric electron density
profile which can be represented by an Epstein layer, the delta pulse
propagation problem can be solved in closed form in Legendre functions.
The analysis of this problem represents a nontrivial extension of the
well-known solution in hypergeometric functions for the propagation

of a sine wave through the Epstein layer.




II. PROPAGATION IN A GENERALIZED IONOSPHERE

The analysis begins with some general considerations of propaga-
tion in the ionosphere. Since the objective is communication through
the ionosphere between the ground and the satellite, the carrier
frequency must be above the ionospheric cutoff frequency, which means
in practice above 40 MHz to take all factors into account. At such
frequencies, ionospheric damping effects are clearly negligible.

It will be assumed that the carrier frequency is sufficiently above
the cutoff frequency so that the ray paths may be taken to be straight
lines, and so that effects of the earth's curvature and magnetic

field may also be neglected. Consideration of polarization effects
will greatly complicate the analysis, so only horizontal polariza-
tion will be considered. With these approximations, the wave equa-

tion which describes the electromagnetic field E(z,t) becomes

2 2 2
o~ _ 1 ) e wN(z) _
5 -5 5 -2 Een =0 (1)
oz c ot

Here e and m are the electron charge and mass, pu the permeability
of free space, and N(z) the electron density. MKS units are used through-
out. The electron density is a slowly varying function of height, with
a maximum at the F2 layer and subsidiary maxima at lower altitudes. The
characteristic lengths associated with appreciable variations of N(z)

are measured in tens to hundreds of kilometers.

The field may be analyzed into its Fourier components, yielding

E(z,t) = 2Ln e(z,w)el®t quw (2)

g8

The transformed field e(z,w) satisfies the equation




2 2 2
[—a—z-i+3c’—2 - e—%&z)-] e(z,0) = 0 (3)

with appropriate boundary conditions. Let the incident field Ei(z,t)
also be analyzed into Fourier components. Then the solution of Eq. (3)
must satisfy the conditions

iwz/

e(z,w) - ei(-m,w) [e™ ™% 4 R(w)eimz/cj

z = - (4

N’

e(Z ’UJ) - ei("w,w)T(w)e-in/c Z = 4o (5)

The experimental fact that the electron density N(z) tends to zero more
rapidly than 1/z far above and far below the main part of the ionosphere
has been used to simplify the boundary conditions. Equations (4) and
(5) define the reflection coefficient R(w) and the transmission coef-
ficient T(w), The latter is the quantity of principal interest,

There exist a few profiles N(z) for which Eq., (3) can be solved ex-
plicitly. These include the constant, linear, quadratic, exponential,

(13)

and Epstein layers. The solutions are all presented in Ref. 4,
pp. 344-364., The application of the solution of the Epstein layer to
pulse propagation is given in the Appendix to this Memorandum.

The simplest plausible approximation for the electron density N(z)
is a slab of thickness H and constant density NO. This "equivalent
slab" theory has been extensively analyzed, since it is most closely akin
to the waveguide transmission problem. However, the direct solution of
Eq. (3) with constant N and the boundary conditions, Eqs. (4) and (5),
leads to a transmission coefficient T(w) whose amplitude is strongly de-
pendent on frequency. This effect is caused by the spurious large gra-
dient of electron density at the boundaries of the layer and by multiple

internal reflections. A different procedure will be followed here,




which will derive an "equivalent slab" from an approximate solution of
the equation, instead of from an approximation to the equation itself,
The procedure corresponds to a higher order WKB solution. Let
K2 be the coefficient of e(z,w) in Eq. (3). At sufficiently high fre-
, 2, 2, 2 2 .
quencies, w /c” is large compared to e wN(z)/m, so K~ never vanishes.

Assume a solution of the form

VA
e = exp i I w(z’)4z’ (6)

where the lower limit is left unspecified. Then the function @(z)

satisfies the differential equation

0 = k% + ip’ ©

where the prime denotes d/dz.

Under the physical conditions which exist in the ionosphere, the
percentage variations of K are small at sufficiently high frequencies.
The same may be assumed to hold for ¢, whence the derivative term on
the right side of Eq. (7) may be treated as a perturbation. Applying

successive substitution to Eq. (7) to the second order produces the

two solutions

(8)

Substituting these expressions in Eq. (6) and performing some of

the integrations yileld the second-order WKB solution:

Z ; Z 12
k 1 &_lJL '] 9
ei,V‘JE exp = i[I K dz 5 X 8 3 dz (9)
where k = w/c. Solutions of the form of Eq. (9) must be fitted to the
boundary conditions Eqs. (4) and (5). When the lower limit of the in-

tegrals is set equal to -~, and k is added and subtracted under the




integral sign to make the expressions converge, it follows that the
approximate solution of the wave equation Eq. (3), which reduces

properly to the incident wave at -», is

z
2
R (R T+ S EACERES
- K
1 K/ ? 1 +2
i 1K /( - __5_)\
+ Rexp 1 {k z-ox i dz/{K - k 8 K3 } ] (10)

There is a corresponding solution which reduces to the transmitted
wave at +°, The solﬁtions may be matched at the point where K’ = 0,
which corresponds to the maximum electron density. The transmission
coefficient may be determined from the matching conditions. Define

k2 = ezu/m. The derivatives of K may be replaced by derivatives of N.

o
After the matching procedure, the transmission coefficient may be ex-
panded in inverse powers of frequency. Correct to inverse fifth powers

(fifth order), the amplitude of the transmission coefficient is unity,

and there results:

T(w) = exp i[ j; {k-\/ Wil N(z)} dz + -31-:(

S~

2

w

:ji (%)Zdz] (11)

The first integral in the exponent is the familiar WKB approxi-
mation. The second term, involving the square of the gradient of
the electron density, is small when the physical problem is con-
sidered correctly. However, if the actual continuous variation of
electron density is replaced by a slab, this integral becomes sin-

gular. Corresponding to this effect, the expansion of the Fresnel




transmission coefficient of a slab displays apparent fourth-order
terms in the amplitude of T(w). These are produced by the spatial
singularities at the slab boundary where the electron density varies
rapidly compared to the wavelength. Such configurations do not
occur in the actual ionosphere. The proper definition of an equiv-
alent slab should therefore be derived from Eq. (11) by matching

the parameters in the expansion of the phase of T(w) in inverse

powers of frequency. There results for the equivalent slab

N, = INz(z)dz / J‘N(z)dz (12)

H = [ I N(z)dz]z/ ]i N2 (2)dz (13)

Quantities which may be actually measured are the electron

density at the maximum Nm and the total electron content

[os]

N, = I N(z)dz (14)

The cutoff frequency of the ionosphere is given by

£_(Hz) = 9[Nm(e/m3>]*5 (15)




Define w = 2w f , 1 = H/c. The experimental conditions are generally
such that inverse fifth powers of the ratio wc/w may be neglected.

Then the transmission coefficient T(w) may be represented by the form

T(w) = exp {i'r [u) - sz - W(Z: } } (16)

Previous investigations of ionospheric pulse propagation have
begun with this expression, which is the transmission coefficient of
a slab of electrons. The investigation to this point in this Memo-
randum has shown the conditions under which the transmission coef-
ficient of the wave propagating through an arbitrary electron dis-
tribution may be replaced by the transmission coefficient of a slab.

In terms of the transmission coefficient, there results for the
original time-dependent field

=]

E(z,t) = -21; f ‘[ dw dt'Ei(-w,t’)T(w)eiw(t-t,'.z/C) z = @ (17)

-0

or, if time is measured from the arrival of the first disturbance

at z, t1 =t - z/c

) = iw(t -t")
E(tl) = 50 Ij dw dt’El(-w,t')T(w)e (18)

-0

When the incident wave is a rectangular pulse, it is expressed as
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Ei(-“’,t') = sin wot' [1¢e")-1(t"-1) ] (19)

Here wo = m fo; fo is the carrier frequency, T is the pulse width,
and 1(t’) denotes the Heaviside unit function, which is zero for t’
negative, and 1 for t’ positive. To avoid having discontinuities

in Ei’ assume that foT is an integer. Since foT is usually a large
number, this is not a significant restriction.

With E, in the form provided by Eq. (19), the integration over t!

may be performed. The result will be given a subscript p for pulse
solution, and the dependence on the carrier frequency f0 will be

indicated explicitly. Thus

8

iwt iw(t,-T) ‘
Ep(fo,tl) = %; -i dw T(w) [e l . 1 ] wo/ wi-w2> (20)

The integrand has no singularity at w = wo. However, it is desired
to separate the two exponential terms, each of which then represents
a singular integral. The integration path must be deformed into

the complex plane to avoid these singularities. Furthermore, to
maintain causality, the integral should vanish for t1 < 0. This

requires that the singularities be evaded by arcs passing below

them. This leads to the representation
= - - 21
Ep(fo,tl) E (£ ,t)) - E(f .t T) (21)

®ui€

iwt
Es(fo’tl) = é% I de T(w)e 1 wq/(wz - wz) (22)

-©-ie
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where Es represents the response to a carrier frequency step-function,
and ¢ is a small positive number, which ensures that the singularities
are avoided in a proper manner. The phase of the square root in

Eq. (16) is to be interpreted as follows:

arngz-w§=0 w>w

(Y =]

lw| < w_

= - - 3
ki w < W, (23)

which ensures that the frequency components below cutoff are at-
tenuated.
If the input waveform is a raised cosine function, it may be

written in the form

(l-cos —?)sin w tl1(6)-1(t-1)] (24)

N =

Ei(.oo ,t) =

Denoting the response by Ec, the relationship between rectangular and

raised cosine pulse is obtained

_1 e(er deoef(e- )} oo
B (foty) =5 E(E 580 = 2 B\t 787 B\fe™ 10 9, (25)
This equation explains why the carrier frequency was explicitly indi-
cated in the pulse response. The problem is to evaluate Es(fo,tl)
when T(w) has the form of Eq. (16). Although the integral can be

(5)

evaluated in closed form in terms of Lommel's functions, the result
is not useful for computation. Approximations to the integral in
Eq. (22) must be consistent with experimental results. Accordingly,

a summary of relevant measurements of ionospheric properties will

now be presented.
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II11. SUMMARY OF EXPERIMENTAL RESULTS

According to Eqs. (12) and (13), the equivalent slab parameters
No and H are to be determined from the integrals of the electron den-
sity and its square. However, the quantities actually measured are
Nﬁ, the electron density at the maximum, and Nt’ the total electron
content., The first is measured by ionosondes, the second by a tech-
nique involving Faraday rotation which has been developed extensively
in recent years. The electron density below the maximum may also be
measured. The integral involving N2 should therefore be eliminated
in terms of measurable quantities. To do this requires specific
assumptions about the shape of the ionospheric layer.

Three forms which have been used for the ionosphere are the
parabolic, Epstein, and Chapman distributions. These lead respec-

tively to the results

Parabolic: N0 = .8 Nm; H=1.25 Nt/Nm
Epstein: N0 = ,667 Nﬁ; H= 1.5 Nt/Nm
Chapman: N0 = .658 Nm; H=1.52 Nt/Nm (26)

The parabolic and Epstein layers have equal numbers of electrons
above and below the maximum, while the Chapman layer displays a top
to bottom ratio of 2.15. Experimental values of the ratio display
a wide range. Thus, Alouette sounder data(lé) display a ratio near
unity at midday, and between 2 and 3 in early morning and evening.

Lunar radar observations in England(ls) give a daytime ratio of
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2,5 to 3.5, while at night the ratio is between 3 and 9. These results
are for solar maximum to average conditions, and are reasonably cor-

(16)

roborated for solar minimum. If the profile is taken to be a
Chapman layer up to one scale height above the maximum, and an expo-
nential at higher altitudes, the top-to~bottom ratio can be used to
determine the constants of the Chapman and exponential functions. At
ratios of 4, 6, and 9, the coefficient .658 in Eq. (16) is reduced to

.553, .512, and ,482, respectively. Experimentally, ratios over 6

occur rarely. In view of these considerations, the representative values

Ny = -625 N, H=1.6N/N (27)

will be used in calculations. The properties of the solution to the
pulse propagation problem principally depend upon Nt’ the total electron
content, and the selection of the constant indicated in Eq. (17) is not
critical,

The measured values of the major parameters Nﬁ and Nt depend upon
time of day, season, latitude, and position in the sunspot cycle, and
they may display rapid fluctuations. Instead of Nﬁ, the ionospheric
cutoff frequency fc defined in Eq. (15) will be presented. For ver-
tical incidence, fc may be as low as 2 MHz, and as high as 15 MHz.

Data on total electron content usually give the total content itself
Nt and an equivalent slab thickness Hs = Nt/Nm. There have been very
many measurements in recent years, and the following presentation does
not pretend to be exhaustive.

Experimental values of the total electron content Nt generally

lie in the range 1016 - 1018 electrons per square meter. Thus, it
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proves advantageous to the presentation to introduce a parameter 1

by the relation

I= 10’16 N, (e/mz) (28)

Measurements of the total electron content under solar maximum
conditions are relatively few, since the experimental techniques were
not sufficiently developed during the period of the last solar maxi-
mum (1958-60). Methods include measurement of the Faraday rotation of
the signals from satellites, lunar radar, and ionospheric backscatter.
Data from Faraday rotation of the signals from Sputnik 3 between
September 1958 and December 1959 are presented by Lawrence et al.(17)
Marked diurnal and seasonal variations appear in the measurements.
Thus, at a local time just before sunrise, I has a mean value of 8
throughout the series of observations, but drops as low as 2.5 on
some winter measurements. The largest single value of I, observed
in the early afternoon during the spring of 1959, was about 160.

A smooth curve drawn through the data shows midday peak values as

80 (Fall 1958), 70 (Winter 1958), 90 (Spring 1959), 35 (Summer 1959),
35 (Fall 1959), and 55 (Winter 1959). The sunspot number decreased
from about 180 to about 130 during the observation period, which

at least partly accounts for the drop between comparable seasons

in the two years. Thus, the daytime values display a strong seasonal
variation, with a maximum at the equinoxes and winter, while the
nighttime values of total electron content are much more nearly

constant.
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The equivalent slab '"thickness" HS = Nt/Nm displays much less
variation. Reference 17 presents data for this quantity as an
equivalent Chapman layer. Converting to slab thickness shows a
range from 350 km (winter night) to 500 km (summer day and night)
during the period September 1958 to September 1959.

Measurements during 1960 and 1961 have been reported by

(18) (19) (20)

Roger, Taylor, and Millman. The measurements show that

the electron content maximizes in the afternoon, with a strong, rather

narrow peak in winter, and reaches a broad but not so high maximum

in summer. Values of electron content at 3 p.m. in winter are

40,18 4ng 70, (20) 8,18 25, 4nq

64. (20)

while in summer they are 1
The much larger values reported in Ref. 20 are associated
with the low latitude (Trinidad) of the observations. The slab
thickness HS at 3 p.m. throughout the year is between 250 and

300 km,*") compared to 250-350 km. ¢20)

Slab thicknesses from

200 to 500 km during the winter day, 200 to 950 km during the
winter night, and 350 km during the summer day were reported in
Ref. 15, while Ref. 20 gives comparable daytime data and values

up to 700 km at night in both summer and winter. Assembling these

assorted results, representative values for the solar maximum

conditions will be chosen as:

Summer Day I=35 HS = 350 km fC = 9 MHz
Summer Night I=10 HS = 500 km fc = 4 MHz
Winter Day I =80 Hs = 400 km fC = 12.7 MHz
Winter Night I=28 HS = 500 km fc = 3.6 MHz
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Measurements have been performed during the declining portions

(21-25) and under solar minimum conditions.(16’26—30)

of the solar cycle
The data display very good correlation among the various experi-

menters. A set of representative values for solar minimum conditions

at mid-latitudes will be chosen as:

Summer Day I=12 HS = 300 km fc = 5.7 Mc
Summer Night I= 3 HS = 150 km fC = 4 Mc
Winter Day I=18 Hs = 240 km fc = 7.7 Mc
Winter Night I= 3 Hs = 150 km fc =4 Mc

At low latitudes,(26) the nighttime thickness is considerably

higher, while in the Southern Hemisphere(zg)

the winter night

values of electron content are much higher. Values of the parameters
at intermediate parts of the solar cycle lie between the values at
maximum and minimum conditijions.

The data as presented show a diurnal range in electron content
of 3-4 to 1 in summer, 6-10 to 1 in winter. The nighttime values
have little seasonal effect but show a 3 to 1 variation over the
solar cycle. The thickness parameter Hs has a moderate (2 to 1)
diurnal variation with little seasonal variation. The daytime
thickness parameter varies less with the solar cycle than does the
nighttime thickness.

The theoretical expressions developed in Section II will now

be simplified using these experimental results.
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IV. DETAILED CONSIDERATIONS OF PULSE PROPAGATION

When the form of Eq. (16) for the transmission coefficient T(W)

is inserted in the integral of Eq. (22), there results:

®w=-ig
w dw P —,
1 o) . 2 2
E (£ ,t) = — ‘[ expiwt+11'{w-\/w -w } ] (29)
s 0 2n w2_w2 c

~o~-i€ o
The standard procedure for evaluating integrals of the general
type, Eq. (18), is to expand -¢p(w), the phase of the transmission co-
efficient T(w), in powers of the deviation from the carrier frequency
and assume that two or three terms are sufficient. Following the no-

tation of Ginzburg,(A) the result becomes

1 - i [1+i ] ]
Es(fo,t) ~ 5 [—E— + F(—yﬁiﬁ—asgg) ]81n(wot-@(wo)) (30)
0=t -q'@) (31)
u . 2
F(u) = J /207 42 e 4 1S(u) (32)
0

Here p(w ) is the phase delay at the carrier frequency, @’(wo) is the
group time delay at the carrier frequency, and ¢”(wo) is the second
derivative of the phase with respect to the radian frequency w, eval-
uated at the carrier frequency. The amplitude of ES is plotted on
page 417 of Ref. 4 and is reproduced in Fig. 1. In terms of the
variable u, the function lEs(u)lis small for u < -4, reaches .5 at

u = 0, reaches a first maximum value of 1.17 at u = 1.25, oscillates
rapidly thereafter, and remains within 5 percent of unity for u > 4.

Reference 4 defines the establishment time of the signal as the period
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Fig. 1—Distortion of a rectangular pulse according
to Ginzburg's theory
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between the time the signal reaches 5 percent of the final value

(u = -4) and the time it remains within + 5 percent of the final
value. Therefore, this establishment time is 8 /E;g?&;?. The custom-
ary definition used in this country is from the 10 percent point to
the 90 percent point, which yields an establishment time equal to

3.3 /5572535.

According to this analysis, the rise time is determined by the
parameter @”(wo). For the phase function of Eq. (19), the situation
of principal interest occurs when the carrier frequency f0 is much
greater than the ionospheric cutoff frequency fc. In this case, the

rise time tr becomes

b= 2.3 72 ¢ g 732 (33)
T c o
while the group time delay w’(wo) = tg becomes
2 2
£, =7 £/2 £ (34)

For the solution to make reasonable physical sense, the group delay
must significantly exceed the rise time. While this condition was
well-satisfied in the problem of reflection of pulses from the iono-
sphere which was the subject considered in Ref., 4, it is not necessar-
ily satisfied in the transmission problem., The value of carrier fre-
quency at which the group delay and the rise time become equal is
f(GHz) = .13 I. This frequency generally lies in the low gigahertz
region. At higher frequencies, the approximations used in deriving
Eq. (30) cease to be valid, since the expansion of the phase in powers
of the deviation from the carrier frequency becomes slowly convergent.

A different approximation is required,
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The new approximation makes use of the well-known method of sta-
tionary phase. The application of this method to pulsed signals is
clearly presented in Ref, 7., However, a direct application of station-
ary phase to the integral of Eq. (27) leads to the same convergence
difficulties as arise in the expansion about the carrier frequency.

It is necessary to make a transformation of variables which is equiva-
lent to expregsing the frequency as a function of phase, instead of

vice versa. The transformation in question was introduced by Demisov,(s)
but he did not employ stationary phase,

In the integral, Eq. (29), a new independent variable z is introduced

defined by the relation

Wz =w-4/0 -w (35)

As the variable w traverses the integration path below the real
axis indicated in Eq. (29), the variable z traverses a contour C
which begins just left of the origin, follows the negative real axis
to z = -1, then follows the unit semicircle in the upper half-plane to
z = 1, returns along the positive real axis to the origin, and closes
by a small semicircle in the lower half-plane. The singularities of
the integrand at w = % wo lie outside the contour in the z-plane,
but the integrand has an essential singularity at z = 0. In terms

of the variable z, the integral becomes

2
1 [ (z° - 1dz 1 1
Eg(fpt) = 4 j z ) w 5 w
c z+2-w—oz+1 z-Zw—c'Z’rl
Cc

X exp f:—c [(erzmyz + £] ) (36)
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The integrand has four poles, located at

z, = m , 2, = - 2, (37)
c
o sgol ol
25 = > 2, =" 24 (38)

When the algebraic part of the integrand is expanded in partial frac-

tions, there results

1 1 1 1 1
E (£ ,t) = ——-I dz [ + - = - ]
s' o 4 . z + zq z + z3 z z, z z3

X exp -1—(;9 [(t+2T)z + -25] ) (39)

The case of principal interest is mo >> mc, so z. is small, and

1
Z 4 is large., Also, 7 is on the order of 500-2000 wsec, while t is

comparable to the group delay which is at most a few microseconds.

The part of the integral, Eq. (39), which involves z._, may easily be

3

¥ ~1
shown to be on the order of (t/27)*%z_ , which is less than .0l for
all cases of interest.
To provide a consistent interpretation of the transformation

from the w-plane to the z-plane, the parameter z, should be con-

1

sidered as having a small negative imaginary part. The singularities

*
of the integrand are at z, and "z where the complex conjugate in

1

the second singularity keeps it in the lower half-plane. The integrand

now has no singularities in the upper half-plane except at the origin.
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The contour C may be expanded to the entire real axis indented down
at the origin, and a large semicircle in the upper half-plane. The lat-
ter makes no contribution to the integral. The contribution to the in-

*
tegral from the term involving -z. may be shown to be the complex con-

1
jugate of the contribution from the term in Z15 from which is derived
iw
oL gz c £ )
Es(fo’t) oo Re J z - 24 P 2 [(t+2T)Z * z ] (40)

To this point the analysis does not differ significantly from
that of Ref. 5. The method of stationary phase is now to be applied
to the integral in Eq. (40). The analysis is complicated by the
presence of the pole of the integrand at z = zys which requires a
careful treatment of the respective positions in the complex plane

of the pole and the saddle points of the integrand. Let

UJC £ -
g(z) = - \:(t+2“r)z v s _\ (41)

The derivative of this is

g/ (z) = %E \:t vor - 5 ] (42)

z

which vanishes at the two points
tz =% Jt/(e+27) (43)

The second derivative of g, evaluated at =+ zs becomes

4

g (tz) =% wc(t+27)3/2 M2l s« (44)
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and the value of g itself at the saddle points is
gl z) = £u tl/z(b+27)1/2 =+8 (45)

The stationary phase technique now replaces g(z) by its expansion
to second-order terms around the two saddle points =% Z e For this
approximation to be reasonable, the third~order terms must make a
negligible contribution when the second-~order terms are already
rapidly varying. Thus, keeping third-order terms, the expansion

around zO is

B(z) ~ 8(z) +3 8" () (=2 )%+ % 8"(2) (z-2)° (46)

and there is a corresponding expansion around -z The effective range

of the second-order terms will be defined by

47

(Y =]

28 ) (2 )7 =

(o]

bz = z = 2= /E7§7z;;; (48)

At this value of z, after much simplification, the third-order con-
tribution to g(z) is
1
_ 372 g (Zo) TT3/2 '
g3(2) = 7% v N3/2° ) 1/2 (49)
g (z )

28

When t is small compared to T, B may be expressed as

B = 4.6 X 10° /Tt (50)
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where t is in microseconds. For the smallest listed value of I, B is
greater than 103 for t greater than .02 psec. Thus, the third-order
contribution to g may be neglected except in the very early time
period, and this approximation becomes better for larger values of I.
Under the same conditions, the saddle points at =+ z are sufficiently
separated so that their contributions may be added independently.
Therefore, the integral in Eq. (40) is approximated by

1
Es(fo,t) ~ o Re

0 2
~iB I dz e-[j’o‘/2 (z420)")

z -z,
2 (io/2(z~2 )2]
+ eiB I dz e —— 0 (51)
0 1

Translate the origin of the first integral to -~z and that of the second
to z, Under the approximations already made, the limits may be ex-

tended to infinity. Thus

o~Lie/2 2%

z -(zo+zl)

1 -iB I dz
Es(fo,t) o Re | e J

° [i0/2 22]
+ eiB I dz e (52)

Y z -(zl-zo)

Again under the same approximations, the exponential begins to oscil-
late rapidly before the denominator has changed significantly from
its value at the origin. In the first integral the denominator may
be replaced by its value at the origin and removed from under the

integration sign. The integral may then be evaluated, and the
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resulting expression shown to be less than .01 for all interesting val-
ues of the parameters. It will therefore be neglected. However, since
z, =z may be small, this approximation cannot be applied to the sec-

ond integral, Consequently, it remains to evaluate the expression

[o-]

2
li/2 z°)
1 i j dT e
Es(fo,t) o Re e - "(Zl'zo)

(53)
This integral may be evaluated in terms of Fresnel integrals.
First make the transformation z = /u/a u, Define a parameter x by

the relation

w -‘}wz - u)z

X =\/§-(z1-zo)=\]:,'—'_ 2 w: S -4z i T (54)
where x is to be given a small negative imaginary part. The real
part of x is positive for t = 0, vanishes at t = tg (the previously
defined group time delay) and is negative for t > tg. The group time
delay tg now receives the interesting physical interpretation that
it corresponds to that time at which the pole and saddle point of
the integral, Eq. (40), are closest together. The integral now
takes the form

Jin/2 w2

u - X

1 iB J du
Es(fo’t) o Re e (55)
-

After a lengthy sequence of transformations, Eq. (55) may be

brought into the same functional form as Ginzburg's result, Eq. (30),

By(£,,0) ~ 15 [ 252 4 F Jstn@ t - 9@ ) (56)

but the argument of the Fresnel integral in Eq. (56) is not the same

as that in Eq. (30). Comparing the arguments




26

w t
e L
7 (W) 8
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RN st

These expressions both vanish at t = tg and have the same slope
there, However, use of Eq. (58) in the argument of the Fresnel
integral leads to a better treatment of the precursor wave than does
Eq. (57). At t = 0, Eq. (56) actually goes to zero, while Eq. (30)
tends to a small but finite value. Equation (56) is really not a
correct reduction of Eq. (55) because the real part has not been
taken correctly., However, the amplitude of the coefficient of
sin [wot - ¢(wo)] in Eq. (56) equals the amplitude of the combination
of sin and cos which results when Eq. (55) is reduced correctly. 1In
deriving Eq. (56) from Eq. (55), the symmetry properties of the
Fresnel integrals have been employed [C(x) = - C(-x), S(x) = - s(-x)].
The equality of amplitudes of Eqs. (56) and (55) depends on z being
real, which means the imaginary part of wo has been allowed to become
zero,

The group time delay tg may be written in terms of the parameter

1 as

4 3 2
- 2 59
tg(usec) 3 X 10 I/fMHZ (59)
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The parameter I, which is proportional to the number of electrons
along the path from transmitter to receiver, should be multiplied
by the secant of the zenith angle of this path. For ground stations
in temperate latitudes and satellites in synchronous equatorial
orbit, this factor is typically between 2 and 3. Therefore, under
solar minimum conditions, the diurnal, seasonal, and observation
angle range of I is from 6 to 48. Under solar maximum conditions,
the range is from 16 to 240.

Figure 1, the graph of Ginzburg's result, is plotted against
'the universal variable (t-tg)/ﬁ;TYEZF. A graph of Eq. (56) against
-x would be identical with Fig. 1. However, the variable x cannot
be expressed solely in terms of the time difference t - t , so there
is no convenient plot of Eq. (56) against a suitably referenced
and scaled time. Therefore, a set of graphs has been drawn to
cover many of the cases of interest, and these graphs of the output
against t - tg are presented in Figs. 2-13. Rectangular and raised
cosine pulses are treated under solar maximum and solar minimum
conditions. Parameter values chosen were: (a) carrier frequency
300 MHz, pulse width 0.1 usec; (b) 1 GHz, 0.05 wsec; (c¢) 5 GHz,
0.01 wsec. The calculations were performed using JOSS.*

The figures all display an oscillatory precursor and an extended
tail. For the rectangular pulses, there is a high-frequency oscil-

lation on the top of the pulse, which can be eliminated by a receiver,

*

JOSS is the trademark and service mark of The RAND Corporation
for its on~line, time-shared computer program and services using that
program.
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However, the long tails can cause a system to regard a pulse as
present when it is actually absent.

The figures show that the 300 MHz, 0.1 psec pulse is very
severely stretched under winter day conditions. The 1 GHz,
0.05 psec pulse is borderline, and the 5 GHz, 0.01 usec pulse

seems acceptable. In terms of Ginzburg's parameter TNmg’(w ) = a,
o

values of a above 8 provide good pulse transmission, values between
3 and 8 are borderline, and values below 3 are bad. (The highly
elongated pulses of Figs. 2 and 4 have a = 1.0.,)

A careful comparison between the theory of Ginzburg and the
results depicted in Figs. 2-13 shows that the minimum acceptable
pulse width is given by about the same value in each theory. The
fine structure on top of the pulse differs, but this is seldom im-
portant. The use of Eq. (56) to treat the precursor permits exten-
sion of the previous theory (Eq. (30)) to circumstances under which
Eq. (30) is not valid.

It may be concluded that the shortest acceptable pulse width
which may be employed in a pulsed communication system between earth
and a satellite is given by equating pulse width and rise time, and

is approximately

1/2 3/2

T(nsec) = 4 I [£(GHz)]™ (60)

where the quantity I is the number of electrons per square meter

along the path in units of 1016. In practice 1 is between 6 and 240,
I1/2

so is between 2.5 and 16. Thus, at 1 GHz, the shortest possible
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pulse width ranges from 10 nsec (solar minimum, night) to about
60 nsec (solar maximum, winter day). At 5 GHz these become between
1l and 6 nsec, permitting very high data rates.

Another important effect is the overall displacement of the
pulses. If I = 240, the group delay at 1000 MHz is .32 usec, while
at 1080 MHz it is .274 wsec. Thus, if a raised cosine pulse of width
.05 psec were transmitted at 1000 MHz, immediately followed by a
.05 usec pulse at 1080 MHz, the two pulses would arrive at the re-
ceiver almost simultaneously. Each distorted pulse can put appreciable
energy into the receiver designed to accept the other. This condi-
tion might require a delay compensator to be built into each channel
of a multichannel pulse code modulation system. Since the differ-
ential delay between channels is proportional to I, and hence may
vary by a factor of 10-20 during the day, a variable delay compen-

sator may be necessary.
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Appendix

THE EPSTEIN LAYER

The symmetrical Epstein layer(13) represents what is most
likely the simplest form of electron density profile which contains
no discontinuities, tends to zero both above and below, and can be
solved in terms of known functions. The functional form for the

electron density is

z/H, 2

eZ/H ) (A-l)

N(z) = 4N0 (1+e

Upon writing e(z,w) = F(z,w) exp - ikz, the wave equation (3) takes

the form
22 ,  adn e/
-3 - 2ik et —'—O'T/ﬁ—i F(z,w) = 0 (A-2)
dz (I+e™' )

Introduce a new independent variable x by the relation

1
X = —— (A-3)
1 + ez/H

and new parameters K = kH, K0 = koH. Then Eq. (A-2) becomes, after

much simplification

2
[x(l-x) Lo+ (2ik-20) & - 4K§N°] F(x,w) = 0 (A-4)
dx

The boundary conditions become
F = ei[1+R(1-x)2“(] x = 1 (A-5)

F - eiT x=0 (A-6)
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The differential equation (A-4) is in the standard form for the

*
hypergeometric function. Introduce a parameter vy by

/'2 1
Y = 4K0N0- %4 (A-7)

For all cases of physical interest y is real. Then the general so-

lution of Eq. (A~4) may be written in the form

1., .. 1 . i
F=e A2F1(2 tiy, 5 - iy, 1+ 21K,X>
+ B x 2K (12K 2F1<% + iy, % - iy, 1 - 2 iK, x) (A-8)

Here A and B are constants. The second term in Eq. (A-8) represents
an incoming wave at z = ®(x = 0); thus the constants are determined
from Eq. (A-6) as A =T, B = 0. Applying the connection formulas for
the hypergeometric function** yields

F==¢e,T
i

P IR (1421K),,F, (3 + 1y, 2oy, 1- 26K, 1-x)
I‘(% + 20K + iy)l‘(% + 2iK - iy)

F(-ZiK)I‘(1+21K)x-21K(1-x)ZleFl(-;- + iy, —; - iy,1 + 2iK,1 - x)
+

] Err( - 1)

Applying the boundary condition Eq. (A-5) expresses the transmission

coefficient T as

I‘(—% + 2iK + iy)l"(% + 2iK - iy)

' [ (24iK) (1+2iK) (A-10)

The reflection coefficient R may also be determined but it will not

be needed.

*
Reference 31, p. 562,
*k
Reference 31, p. 563.
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It will first be shown that T reduces to the form of Eq. (11)

*
for k sufficiently large. For this, use the asymptotic formula

1 1 1
12z - 3t
360z 1260z

log ' (2) = (z - %)log z ~z + i log 21 + (A-11)

2 5

which is correct to inverse sixth powers of z. For k sufficiently
large, K = kH is large compared to either 1 or y. The expansion
(A-11) may be applied to each gamma-function factor in Eq. (A-10),
and then the result may be further expanded in inverse powers of
v/K and 1/K. All terms involving positive powers of K drop out.
The result of the laborious simplifications is
r 1

+

> 60Hk >

2i kzN H i k NH ik
(3] 0 2
k

3 15 (A-12)

log T —

= Jo o

The terms contributing negative even powers of k all cancel,
The first three terms of this expression may be identified as the
first three terms in the expansion of the first integral in the
exponent of Eq. (11), while the fourth term corresponds to the second
integral in Eq. (11) when Eq. (A-1) is substituted for N. Thus, the
asymptotic expansions of the approximate solution of Eq. (10) and the
exact solution of Eq. (A-10) agree to fifth-order terms, Quantities
neglected in Eq. (A-11) and ensuing expansions are less than .001 for
z = 1, which corresponds to frequencies far below the region of
interest,

The amplitude of the transmission coefficient T may be expressed

exactly by the relation

*
Reference 31, p, 257.
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sinh 21K
T = — 172
3 (cosh 4K + cosh 2ﬂy)]
At high frequencies, this is approximately
IT(w)| = 1 - cosh 2my e K (A-14)

and thus the amplitude of the transmission coefficient tends ex-
ponentially to unity. This explains why the real terms in the asymp-
totic expansion drop out. It may be expected that this result is
generally true for electron density profiles which are continuous,
have continuous derivatives, and tend exponentially to zero far
above and far below the maximum.

While the incident carrier pulse problem cannot be solved
exactly with the electron distribution Eq. (A-1) it is possible
to solve for the §-function response. This is the Fourier transform

of T(w), or

E, (t) = '2%? _f dw e (W) (A-15)

and represents the solution when Ei(-m,t) = §(t). The integral

becomes
2 1 (1
E (t) ==& J‘dK iKet/H F(z“Y*ZlK)F(z iy+-211()
T mE T (21K)T (1+21K)
= 6(t) + 1l c -\' dK eiKCt/H [P('§+1Y+21K)F(E- iy+21K) a1
) am H g T(2IK)L (1+21K) - 1

(A-13)

(A-16)
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The integral in Eq. (A-17) is convergent. The integrand has poles

at 1/2 + iy + 2iK = - n, where n is a positive integer, or equivalently

R | 1 1 -
K—=F2 +i(2n+4> (A-18)

n

These all 1ie in the upper half-plane. Evaluating the residues at

these poles yields

—

E, () = 6(t) + ZLHZX-D,“ [ (-n-2iy)e Ot/ 2H(n+1/2+iv)] ]
n. 1 . 1 ]
0 r(-n-g - 1)(-ne 3 -5v)

-[et/2H(n+1/2-1y) ]

; [ (-n+2iy)e

I i (A-19)
i P(-n--—z' + iy)l"(—n +-£+ i\()-
*
Use of the reflection formula
C(z)'(1-2z) =7 csc Tz (A-20)
enables the series to be written as
- I‘(-l +i n)l‘(—3 +iy+n>
E, (t) = 6(t) + = Re —SOShTTY 2 Y2
6 2H Ti sinh Ty [ (14+2iy+n)n!
0
« e-[ct/2H(n+1/2+iy)] (A-21)
This is a hypergeometric function, yielding
7+ +1)
= =4
E (t) = 6(t) + — Re —S0S0TY I‘(2 NS A2
6 n mi sinh Ty T (1+2iy)
x e Lot/ (1/2“\()]2}*1(% +iy,-§ +iy,1+2iy,e'[°t/m]) (A-22)

This hypergeometric function may be identified as a Legendre function.

After many horrendous details, there results

*
Reference 31, p. 256.
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E, (£) = 6(t) - ?fE Pty (2elet/2H]_4y (A-23)

It follows that for a general input function Ei(t), the output

is given by

[ct'/ZH]_l)

(2e (A-24)

t
¥ = 7 __(1— n PR AN
E(t) = f dt qc7 Ei(L t }P';z"*'i‘y
£

In the case of principal interest, the argument of the Legendre func-
tion is close to one, while its order is large. This is the transi-
tional region in which the Legendre function is represented by an
expansion in Bessel functions. The resulting expansion is very

b,(ll)

similar to the corresponding representation for a sla and there

seems little point to carrying the analysis further,
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